已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图②,△GMN从图①的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:
(1)在整个运动过程中,当点G在线段AE上时,求t的值.
(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形.若存在,求出t的值;若不存在,说明理由.
(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.
作图题:已知Rt△ABC,(1)请画出它的外接圆,圆心为O.
(2)若AC=3,BC=2,圆O的半径为
反比例函数,当x=2时,y=5,
⑴求反比例函数解析式;
⑵求y=-3时x的值。
如图,二次函数与x轴交于点B和点A(-1,0),与y轴交于点C,与一次函数
交于点A和点D。
求出
的值;
若直线AD上方的抛物线存在点E,可使得△EAD面积最大,求点E的坐标;
点F为线段AD上的一个动点,点F到(2)中的点E的距离与到y轴的距离之和记为d,求d的最小值及此时点F的坐标。
在平面直角坐标系中,已知点A(4,0),点B(0,3). 点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.连结AQ,当△ABQ是直角三角形时,求点Q的坐标
当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数
今年3月10日,云南盈江发生了里氏5.8级地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,某校全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:
班级 |
(1)班 |
(2)班 |
(3)班 |
金额(元) |
2000 |
![]() |
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.
请根据以上信息,帮助吴老师解决下列问题:求出(2)班与(3)班的捐款金额各是多少元
求出(1)班的学生人数.