如图1,关于的二次函数y=-
+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2=3
,若存在求出点F的坐标,若不存在请说明理由。
(本题12分)若a、b互为相反数,b、c互为倒数,并且m的立方等于它本身.
(1)试求+ac值;
(2)若a>1,b<﹣1,且m<0,S=|2a一3b|﹣2|b﹣m|﹣|b+|,试求4(2a一S)+2(2a﹣S)﹣(2a﹣S)的值.
(3)若m≠0,当x为有理数时,|x+m|﹣|x﹣m|存在最大值,请求出这个最大值(直接写出答案).
(本题12分)已知数轴上有A、B、C三个点,它们表示的数是﹣24,﹣10,10.
(1)填空:AB=_________,BC= ;
(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t秒,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,用含t的代数式表示BC和AB的长,并探索:BC-AB的值是否随着时间t的变化而改变?请说明理由
平安加气站某日7:00前的储气量为10000立方米.加气站在加气过程中每把加气枪均以每小时200立方米的速度为汽车加气.设加气站从7:00开始加气总时间为x(小时)(加气期间关闭加气枪的时间忽略不计).另外,加气站在不同时间段加气枪的使用数量如下:
时间段 |
7:00—7:30 |
7:30—8:00 |
8:00以后 |
加气枪使用数量 (单位:把) |
2 |
4 |
6 |
(1)7:30时加气站的储气量为 立方米;
(2)当x>1时,试用含x的代数式表示加气站加气x小时后的储气量(答案要求化简);
(3)若每辆车的加气量均为20立方米,试说明前70辆车能否在当天8:30之前加完气?若能,请加以说明;若不能,则8:00以后至少还需添加几把枪加气才能保证在当天8:30之前加完气?
(本题10分)定义一种新运算:观察下列式子:
(1)请你想一想: ;
(2)若,那么
(填入 “=”或 “≠ ”)
(3)若,请求出
的值。
已知关于的方程:
与
有相同的解,求关于
的方程
的解.