应用题分式方程(本小题满分8分)
我区某校九年级的同学利用清明假期外出踏青、赏春.从学校到景区共10千米,一部分同学骑自行车先出发,10分钟后,其余同学乘汽车出发,结果他们同时到达集合地点.已知汽车的速度是骑车同学速度的2倍,求两部分同学分别每小时走多少千米?
如图,过点P(2,)作
轴的平行线交
轴于点
,交双曲线
(
)于点
,作
交双曲线
(
)于点
,连结
.已 知
求
的值
设直线MN解析式为
,
求不等式≥
的解集;
有一人患了流感,经过两轮传染后共有81人患了流感,每轮传染中平均一个人传染了几个人
如图,在ABCD的
各边AB、BC、CD、DA上,分别取点K、L、M、N,使A
K=CM、BL=DN,求证:四边形KLMN为平行四边形。
如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).
如图(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=.
写出顶点A、B、C的坐标;
如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM=x,四边形OMPN的面积为y.
①求出y与x之间的函数关系式,并写出自变量x的取值范围;
②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P的坐标;如果不存在,说明理由.