(本小题满分10分)选修4-4:坐标系与参数方程
将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线与C的交点为
,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段
的中点且与
垂直的直线的极坐标方程.
已知椭圆的右准线
与
轴相交于点
,过椭圆右焦点
的直线与椭圆相交于
两点,点
在右准线上,且
轴。
求证:直线经过线段
的中点。
已知抛物线:
和抛物线
:
是否存在直线
,使直线
与抛物线
从下到上顺次交于点
且这些点的纵坐标
组成等差数列?若存在,求出直线
的方程,若不存在,请说出理由
已知双曲线的两条渐进线过坐标原点,且与以点
为圆心,
为半径的圆相且,双曲线的一个顶点
与点
关于直线
对称,设直线
过点
,斜率为
。
(Ⅰ)求双曲线的方程;
(Ⅱ)当时,若双曲线
的上支上有且只有一个点
到直线
的距离为
,求斜率
的值和相应的点
的坐标。
.一条斜率为1的直线与离心率为
的双曲线
交于
两点,
求直线与双曲线的方程
已知中心在原点,顶点在
轴上,离心率为
的双曲线经过点
(I)求双曲线的方程;
(II)动直线经过
的重心
,与双曲线交于不同的两点
,问是否存在直线
使
平分线段
。试证明你的结论