游客
题文

如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.

(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;
(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.
探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);
(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.  

科目 数学   题型 解答题   难度 较难
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率;
(3)求小明、小华各取一次小球所确定的数x、y满足的概率.

如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1


(1)证明:△A1AD1≌△CC1B
(2)若∠ACB=30°,试问当点C1在线段AC上的什么位置时,四边形ABC1D1是菱形. (直接写出答案)

某中学就到校的方式问题对初三年级的所有学生进行一了次调查,并将调查结果制作了表格和扇形统计图,请你根据图表信息下列各题:
(1)补全下表:

初三学生
人数
步行
人数
骑车
人数
乘公交车
人数
其它方式
人数

60




(2)在扇形统计图中,“步行”对应的圆心角的度数为.

先化简,再求值,其中

如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转,得到线段AB.过点B轴的垂线,垂足为E,过点C轴的垂线,交直线BE于点D.运动时间为秒.

(1)当点B与点D重合时,求的值;
(2)设△BCD的面积为S,当为何值时,?
(3)连接MB,当MBOA时,如果抛物线的顶点在△ABM内部(不包括边),求a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号