【2015高考陕西,理21】(本小题满分12分)设是等比数列
,
,
,
,
的各项和,其中
,
,
.
(Ⅰ)证明:函数在
内有且仅有一个零点(记为
),且
;
(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较
与的大小,并加以证明.
用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面朝上的次为;乙抛掷3次,记正面朝上的次为
.(Ⅰ)分别求
和
的期望;(Ⅱ)规定:若
>
,则甲获胜;否则,乙获胜.求甲获胜的概率.
已知函数.(Ⅰ)求函数
的最小正周期;(Ⅱ)若函数
在[-
,
]上的最大值与最小值之和为
,求实数
的值.
袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:
(1)3个全是红球的概率. (2)3个颜色全相同的概率.
(3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.
由经验得知,在某商场付款处排队等候付款的人数及概率如下表:
排队人数 |
0 |
1 |
2 |
3 |
4 |
5人以上 |
概率 |
0.1 |
0.16 |
0.3 |
0.3 |
0.1 |
0.04 |
(1)至多有2人排队的概率是多少? (2)至少有2人排队的概率是多少?
某学校篮球队,羽毛球队、乒乓球队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:
(1)该队员只属于一支球队的概率;
(2)该队员最多属于两支球队的概率