C(选修4—4:坐标系与参数方程)
已知圆C的极坐标方程为,求圆C的半径.
已知不等式x2-2x-3<0的解集为A,不等式x2+4x-5<0的解集为B.
(1)求A∪B;
(2)若不等式x2+ax+b<0的解集是A∪B,求ax2+x+b0的解集.
一个盒子中有2个红球和1个白球,每次取一个.
(1)若每次取出后放回,连续取两次,记A=“取出两球都是红球”,B=“第一次取出红球,第二次取出白球”,求概率P(A),P(B);
(2)若每次取出后不放回,连续取2次,记C=“取出的两球都是红球”,D=“取出的两个球中恰有1个是红球”,求概率P(C),P(D).
(1)过点P(0,0),Q(4,2),R(-1,-3)三点的圆的标准方程式什么?
(2)已知动点M到点A(2,0)的距离是它到点B(-1,0)的距离的倍,求:(1)动点M的轨迹方程;(2)根据
取值范围指出轨迹表示的图形.
汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A |
轿车B |
轿车C |
|
舒适型 |
100 |
150 |
Z |
标准型 |
300 |
450 |
600 |
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(用列举法求概率)
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取两个数,求两数之差的绝对值不超过0.5的概率.(用列举法求概率)
一个盒中有6个球,其中红球1个,黑球3个,白球2个,现从中任取3个球,用列举法求下列事件的概率:(1)求取出3个球是不同颜色的概率.(2)恰有两个黑球的概率(3)至少有一个黑球的概率