(本小题满分13分)已知函数满足
,且当
时,
,当
时,
的最大值为
.
(1)求实数a的值;
(2)设,函数
,
.若对任意
,总存在
,使
,求实数b的取值范围.
某种水果的单个质量在500g以上视为特等品.随机抽取1000个该水果,结果有50个特等品.将这50个水果的质量数据分组,得到下边的频率分布表.
(1)估计该水果的质量不少于560g的概率;
(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.
在公差不为0的等差数列中,
,且
成等比数列.
(1)求的通项公式;
(2)设,试比较
与
的大小,并说明理由.
已知函数.
(1)当时,解不等式
;
(2)若时,
,求a的取值范围.
长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.
(1)以直线AB的倾斜角为参数,求曲线C的参数方程;
(2)求点P到点距离的最大值.
如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.
求证:(1);(2)EF//CB.