如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为 ;抛物线的解析式为 .
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
(本小题满分13分)
已知已知.
(1)求、
;
(2)求.
已知函数,函数
的最小值为
。
(1)求的表达式。
(2)是否存在实数m,n同时满足以下条件:
① m>n>3;
② 当的定义域为[m,n]时,值域为
若存在,求出m,n的值;若不存在,说明理由。
某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算:
可以享受折扣优惠金额 |
折扣率 |
不超过500元的部分 |
5 ℅ |
超过500元的部分 |
10 ℅ |
某人在此商场购物总金额为x元,可以获得的折扣金额为y元.
(1)写出y关于x的解析式. (2) 若y=30,求此人购物实际所付金额。
( 12分)已知函数,若函数
满足
=-
(1)求实数a的值。(2)判断函数的单调性
设函数, 求使得
<
的x的取值范围.