游客
题文

如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为  ;抛物线的解析式为            
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

已知AB分别为椭圆E x 2 a 2 + y 2 = 1 a>1)的左、右顶点,GE的上顶点, AG GB = 8 P为直线x=6上的动点,PAE的另一交点为CPBE的另一交点为D

(1)求E的方程;

(2)证明:直线CD过定点.

甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为 1 2

(1)求甲连胜四场的概率;

(2)求需要进行第五场比赛的概率;

(3)求丙最终获胜的概率.

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD ABC 是底面的内接正三角形, P DO 上一点, PO = 6 6 DO

(1)证明: PA 平面 PBC

(2)求二面角 B - PC - E 的余弦值.

{ a n } 是公比不为1的等比数列, a 1 a 2 a 3 的等差中项.

(1)求 { a n } 的公比;

(2)若 a 1 = 1 ,求数列 { n a n } 的前 n 项和.

已知函数 f ( x ) = a e x - 1 - ln x + ln a

(1)当 a = e 时,求曲线y=fx)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;

(2)若fx)≥1,求a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号