如图,已知抛物线的顶点D的坐标为(1,
),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.
(l)求抛物线所对应的二次函数的表达式;
(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;
(3)当P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.
已知函数
(),且函数
的最小正周期为
.
(Ⅰ)求函数的解析式;
(Ⅱ)在△中,角
所对的边分别为
.若
,
,且
,试求
的值.
已知,直线l:
,椭圆C:
,
,
分别为椭圆C的左、右焦点。
(Ⅰ)当直线l过右焦点时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A,B两点。
(ⅰ)求线段AB长度的最大值;
(ⅱ),
的重心分别为G,H。若原点O在以线段GH为直径的圆内,求实数
的取值范围。
已知曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差是1。
(Ⅰ)求曲线C的方程;
(Ⅱ)过点K(-1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D。证明:点F在直线BD上;
过点作直线l交x轴于A点、交y轴于B点,且P位于AB两点之间。
(Ⅰ),求直线l的方程;
(Ⅱ)求当取得最小值时直线l的方程。
已知双曲线C关于两条坐标轴都对称,且过点,直线
与
(
,
为双曲线C的两个顶点)的斜率之积
,求双曲线C的标准方程。