如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米,设米,花坛AMPN的面积为
平方米
(1)求关于
的函数解析式和定义域;
(2)要使花坛AMPN的面积大于32平方米,求的取值范围;
(3)当AM,AN的长度分别是多少时,花坛AMPN的面积最小,并求出最小面积.
建造一个容积为50,高为2
长方体的无盖铁盒,问这个铁盒底面的长和宽各为多少时材料最省?
解关于的不等式:<
.
如图是一个从的”闯关”游戏.
规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于则闯关成功.
(1)求闯第一关成功的概率;
(2)记闯关成功的关数为随机变量X,求X的分布列和期望。
如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.
已知的展开式前三项中的
的系数成等差数列.
(1)展开式中所有的的有理项为第几项?
(2)求展开式中系数最大的项.