(本小题满分14 分)设,
分别为椭圆
:
的左、右焦点,点
为椭圆
的左顶点,点
为椭圆
的上顶点,且
.
(1)若椭圆的离心率为
,求椭圆
的方程;
(2)设为椭圆
上一点,且在第一象限内,直线
与
轴相交于点
,若以
为直径的圆经过点
,证明:点
在直线
上.
一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度(单位:m/s)紧急刹车至停止。求:
(I)从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。
本题满分10分)
设函数为奇函数,其图象在点
处的切线与直线
垂直,导函数
的最小值为
.试求
,
,
的值。
已知函数.
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论在
上的单调性.
若非零函数对任意实数
均有
,且当
时,
;
(1)求证:(2)求证:
为减函数
(3)当时,解不等式
武汉市某地西瓜从2012年6月1日起开始上市。通过市场调查,得到西瓜种植成本Q(单位:元/kg)与上市时间t(单位:天)的数据如下表:
时间t |
50 |
110 |
250 |
种植成本Q |
150 |
108 |
150 |
求:1)根据上表数据,从下列函数中选取一个函数描述西瓜种植成本Q与上市时间t的变化关系。
Q=at+b, Q=, Q= a
, Q=a
.
2)利用你选取的函数,求西瓜种植成本最低时的上市天数及最低种植成本。