已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M,N,若,求圆C的方程;
(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求的最小值及此时点P的坐标.
某校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱。
(1)根据以上数据完成以下列联表:
(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?
(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率。
参考公式:(其中
)
![]() |
![]() |
![]() |
![]() |
|
是否有关联 |
没有关联 |
90% |
95% |
99% |
已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.
已知函数(e为自然对数的底数).
(1)求函数的单调增区间;
(2)设不等式的解集为M,且集合
,求实数t的取值范围.
已知是
内任意一点,连结
并延长交对边于
,
,
,则
.这是平面几何的一个命题,其证明常常采用“面积法”:
.
运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明。
已知为实数,函数
.
(1) 若,求函数
在[-
,1]上的极大值和极小值;
(2)若函数的图象上有与
轴平行的切线,求
的取值范围.