如图1,点A(8,1)、B(n,8)都在反比例函数(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.
(1)求m的值和直线AB的函数关系式;
(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.
①设△OPQ的面积为S,写出S与t的函数关系式;
②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.
在平面直角坐标系中,抛物线y=x+5x+4的顶点为M,与x轴交于A、B两点
与y轴交于C点。
(1)求点A、B、C的坐标;
(2)求抛物线y=x+5x+4关于坐标原点O对称的抛物线的函数表达式;
(3)设(2)中所求抛物线的顶点为,与x轴交于
、
两点,与y轴交于
点,在以A、B、C、M、
、
、
、、这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积。
胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。假设组团参加甲、乙两家旅行社两日游的人数均为x人。
(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;
(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。
在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.
(1)求点A,B的坐标;
(2)求抛物线C1的表达式及顶点坐标;
(3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.
作平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线的一个交点为P(2,m),与x轴、y轴分别交于点A,B.
(1)求m的值;
(2)若PA=2AB,求k的值.
(本小题10分)
已知二次函数( b,c为常数).
(Ⅰ)当b =2,c =-3时,求二次函数的最小值;
(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;
(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.