(本小题满分12分)在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为
的考生有
人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成 绩为的人数;
(Ⅱ)若等级分别对应
分,
分,
分,
分,
分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为
的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为
的概率.
(本小题满分10分)选修4-1:几何证明选讲
已知(
)的外接圆为圆
,过
的切线
交
于点
,过
作直线交
于点
,且
(1)求证:平分角
;
(2)已知,求
的值.
(本小题满分12分)已知函数为常数)的所有极值之和为零;
(1)求及
的极大值点;
(2)若的极大值为
,对任意
,
恒成立,求实数
的取值范围.
(本小题满分12分)已知椭圆:
,其通径(过焦点且与x轴垂直的直线被椭圆截得的线段)长
.
(1)求椭圆的方程;
(2)设过椭圆右焦点的直线(不与
轴重合)与椭圆交于
两点,问在
轴上是否存在一点
,使
为常数?若存在,求点
的坐标,若不存在,说明理由.
本小题满分12分)在平行六面体中,
,
,
是
的中点.
(1)证明:面
;
(2)若,求直线
与平面
所成角的正弦值.
(本小题满分12分)某电视台有一档综艺节目,其中有一个抢答环节,有甲、乙两位选手进行抢答,规则如下:若选手抢到答题权,答对得20分,答错或不答则送给对手10分.已知甲每次抢到答题权的概率为,且答对的概率为
,乙抢到答题权的概率为
,且答对的概率为
.
(1)在一轮抢答中,甲得到0分的概率;
(2)若比赛进行两轮,求甲得分的分布列及其期望.