为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前次考试的数学成绩
、物理成绩
进行分析.下面是该生
次考试的成绩.
数学 |
88 |
83 |
117 |
92 |
108 |
100 |
112 |
物理 |
94 |
91 |
108 |
96 |
104 |
101 |
106 |
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的理由;
(2)已知该生的物理成绩与数学成绩
是线性相关的,若该生的物理成绩达到
分,请你估计他的数学成绩大约是多少?
(已知8894+83
91+117
108+92
96+108
104+100
101+112
106=70497,
)
(参考公式:,
)
.求下列函数的定义域:
(1);(2)
.
(本小题满分10分)
已知圆和圆
的极坐标方程分别为
,
.
(1)把圆和圆
的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.
(本小题满分12分)已知函数f (x) = ax2 + 2ln(1-x),其中a∈R.
(1)是否存在实数a,使得f (x)在x =处取极值?若存在,求出a的值,若不存在,说明理由;
(2)若f (x)在[-1,]上是减函数,求实数a的取值范围.
(本小题满分12分)
某厂工人在2010年里,如果有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2010年一年里所得奖金的分布列及其数学期望。
(本小题满分12分)设随机变量X的概率分布为(k=1,2,3,4):
(Ⅰ)确定常数的值;
(Ⅱ)写出的分布列;
(Ⅲ)计算的值.