在做解方程练习时,学习卷中有一个方程“■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当
时代数式
的值相同.”聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数.
如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD,试猜想线段CE、BD之间的数量关系,并说明理由.
如图所示的网格中,每个小网格都是边长为1的正方形,每个小正方形的顶点叫格点,△ABC的顶点都在格点上.在AC的延长线上取一点D,D也在格点上,并连接BD.
(1)如果AC=CD,则△ABD是 三角形;
(2)如果△ABD是以BD为底的等腰三角形,求△ABD的周长.
解方程:=2﹣
.
(1)计算:﹣
×
;
(2)先化简,再求值:(1﹣)÷
,其中a=﹣
.
(本小题8分)甲骑自行车,乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图像如图所示,根据图像解决下列问题:
(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?
(2)分别求出甲、乙两人的行驶速度;
(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出行驶时间戈的方程或不等关系(不化简,也不求解):①甲在乙前面;②甲与乙相遇;③甲在乙后面.