(本小题满分14分)已知函数(其中
,无理数
).当
时,函数
有极大值
.
(1)求实数的值;
(2)求函数的单调区间;
(3)任取,
,证明:
.
如图,在四棱锥的底面边长和各侧棱长都是13,
分别是
上的点且
.求证:直线
平面
![]() |
判断下列命题是否正确.
(1)两个相交平面有不在同一直线上的三个公共点;
(2)经过空间任意三点有且只有一个平面;
(3)一个角一定是平面图形;
(4)在空间两两相交的三条直线必共面.
已知分别是空间四边形
的边
上的点,
且四边形是平行四边形,求证:
平面
,
平面
.
![]() |
如图ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.
(1)求三棱锥D1—DBC的体积;
(2)证明BD1∥平面C1DE;
(3)求面C1DE与面CDE所成二面角的正切值.
如图,已知ABCD是矩形,E是以CD为直径的半圆周上一点,且面CDE⊥面ABCD.
求证:CE⊥平面ADE.