(本小题12分)已知数列的前n项和为
,
,
.
(1)求数列的通项公式;
(2)求数列的前n项和
.
如图,已知是棱长为
的正方体,点
在
上,点
在
上,且
.
(1)求证:四点共面;
(2)若点在
上,
,点
在
上,
,垂足为
,求证:
平面
;
(3)用表示截面
和侧面
所成的锐二面角的大小,求
.(4分
(本小题满分14分)
设数列满足
,
.
(Ⅰ)求数列的通项;
(Ⅱ)设,求数列
的前
项和
.
(本小题满分12分)
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率
.
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求
的分布列.
(本小题满分12分)已知函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在区间
上的最小值和最大值.
(本小题满分14分)
已知,其中
是自然对数的底,
(1)时,求
的单调区间、极值;
(2)是否存在实数,使
的最小值是3,若存在,求出
的值,若不存在,说明理由;
(3)在(1)的条件下,求证: