(1)数学爱好者小森偶然阅读到这样一道竞赛题:
一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF的面积.
小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于 .
(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.
请你仿照小森的思考方式,求出这个八边形的面积.
如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径.
求证:∠BAM=∠CAP.
如图,AB是⊙O 的直径,CD是⊙O的一条弦,且CD⊥AB于点E.
(1)求证:∠BCO=∠D;
(2)若CD=,AE=2,求⊙O的半径.
如图,一次函数y=kx+b的图象与反比例函数y=的[图象交于A、B两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
已知二次函数图象的对称轴是,且函数有最大值为2, 图象与x轴的一个交点是
(-1,0),求这个二次函数的解析式.
已知抛物线.
(1)用配方法将化成
的形式;
(2)将此抛物线向右平移1个单位,再向上平移2个单位,求平移后所得抛物线的解析式.