游客
题文

(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为           
(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?
(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,在 ΔABC 中, A = 90 ° AB = 3 AC = 4 ,点 M Q 分别是边 AB BC 上的动点(点 M 不与 A B 重合),且 MQ BC ,过点 M BC 的平行线 MN ,交 AC 于点 N ,连接 NQ ,设 BQ x

(1)试说明不论 x 为何值时,总有 ΔQBM ΔABC

(2)是否存在一点 Q ,使得四边形 BMNQ 为平行四边形,试说明理由;

(3)当 x 为何值时,四边形 BMNQ 的面积最大,并求出最大值.

如图,已知矩形 ABCD 中,点 E F 分别是 AD AB 上的点, EF EC ,且 AE = CD

(1)求证: AF = DE

(2)若 DE = 2 5 AD ,求 tan AFE

已知点 E 为正方形 ABCD 的边 AD 上一点,连接 BE ,过点 C CN BE ,垂足为 M ,交 AB 于点 N

(1)求证: ΔABE ΔBCN

(2)若 N AB 的中点,求 tan ABE

将一副三角板 Rt Δ ABD Rt Δ ACB (其中 ABD = 90 ° D = 60 ° ACB = 90 ° ABC = 45 ° ) 如图摆放, Rt Δ ABD D 所对直角边与 Rt Δ ACB 斜边恰好重合.以 AB 为直径的圆经过点 C ,且与 AD 交于点 E ,分别连接 EB EC

(1)求证: EC 平分 AEB

(2)求 S ACE S BEC 的值.

ΔABC 中, M AC 边上的一点,连接 BM .将 ΔABC 沿 AC 翻折,使点 B 落在点 D 处,当 DM / / AB 时,求证:四边形 ABMD 是菱形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号