如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.
某商场销售一种西装和领带,西装每套定价500元,领带每条定价60元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).
(1)若该客户按方案一购买,需付款______________元.(用含x的代数式表示)若该客户按方案二购买,需付款_____________元.(用含x的代数式表示)
(2)若x=30,通过计算说明此时按哪种方案购买较为合算?
一只蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记为“+”,向负半轴运动记为“—”,从开始到结束爬行的各段路程(单位:cm)依次为+7,—5,
—10,—8,+9,—6,+12,+4。
(1)若A点在数轴上表示的数为—2,则蜗牛停在数轴上何处,请通过计算加以说明。
(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?
若、
互为相反数,
、
互为倒数,
的绝对值等于2,计算
的值。
(1)化简:
(2)先化简,再求值:,其中
,
如图所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数。请画出从正面和从左面看到的这个几何体的形状图。
从正面看从左面看