已知非零向量,
满足
且
.
(Ⅰ)若,求向量
,
的夹角;
(Ⅱ)在(Ⅰ)的条件下,求的值.
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且
(Ⅰ)求数列{an}和{bn}的通项公式:
(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
设正有理数x是的一个近似值,令
.
(Ⅰ)若;
(Ⅱ)比较y与x哪一个更接近于,请说明理由.
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线
与圆C的交点为O,P,与直线
的交点为Q,求线段PQ的长.
如图,、
、
是圆
上三点,
是
的角平分线,交圆
于
,过
作圆
的切线交
的 延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.
已知函数在点
处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+
)均有
恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求证:.