某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
如图,⊙O的弦AB=8,直径CD⊥AB于M,OM :MD ="3" :2, E是劣弧CB上一点,连结CE并延长交CE的延长线于点F.
求:(1)⊙O的半径;
(2)求CE·CF的值.
“惠民”经销店为某工厂代销一种工业原料(代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨;该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨工业原料共需支付厂家及其它费用100元.
(1)当每吨售价是240元时,计算此时的月销售量;
(2)若在“薄利多销、让利于民”的原则下,当每吨原料售价为多少时,该店的月利润为9000元;
(3)每吨原料售价为多少时,该店的月利润最大,求出最大利润.
如图,点E、F分别是ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若AE=BE,∠BAC=90°,试判断四边形AECF的形状,并说明理由.
某中学开展“中国梦、我的梦”演讲比赛,甲、乙两班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.
(1)根据下图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?
已知关于x的方程.
(1)求证:无论k取什么实数值,这个方程总有实数根;
(2)当=3时,△ABC的每条边长恰好都是方程
的根,求△ABC的周长.