(本小题满分12分)学校生活区内建有一块矩形休闲区域,
,
,为了便于同学们平时休闲散步,学校后勤部门将在这块区域内铺设三条小路
,考虑到学校整体规划,要求
是
的中点,点
在边
上,点
在边
上,且
如图所示.
(1)设,试将
的周长
表示成
的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为800元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.
如图,在平面直角坐标系中,点
,直线
。设圆
的半径为
,圆心在
上。
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围。
如图,在平面直角坐标系中,已知椭圆
经过点
,椭圆的离心率
.
(1)求椭圆的方程;
(2)过点作两直线与椭圆
分别交于相异两点
、
.若
的平分线与
轴平行, 试探究直线
的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.
在等比数列中,
,
(1)和公比
;
(2)前6项的和.
设命题;命题
:不等式
对任意
恒成立.若
为真,且
或
为真,求
的取值范围.
求经过直线的交点M,且满足下列条件的直线方程:
(1)与直线2x+3y+5=0平行;
(2)与直线2x+3y+5=0垂直.