如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动
(1)①当t=3秒时,点P走过的路径长为 ;②当t= 秒时,点P与点E重合;③当t= 秒时,PE∥AB;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.
小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,购买涂料费用为4800 元,粉刷面积是150 m2,最后计算时,有以下几种方案:
方案一:按工计算,每个工30元(1个人干一天是1个工);
方案二:按涂料费用算,涂料费用的30%作为工钱;
方案三:按粉刷面积算,每平方米付工钱12元:
请你帮小红家出主意,选择最合算的付钱方案,是元.
如图,直线l1:y=3x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;
(2)不解关于x,y的方程组,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.
如图,L1,L2分别表示两个一次函数的图象,它们相交于点P,
(1)求出两条直线的函数关系式;
(2)点P的坐标可看作是哪个二元一次方程组的解;
(3)求出图中△APB的面积.
如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;
(2)不解关于x,y的方程组,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.
利用图象求方程组的解.