在四棱锥中,底面
为直角梯形,
,
侧面
底面
,
,
.
(1)若中点为
.求证:
;
(2)若,求直线
与平面
所成角的正弦值.
已知数列(
,
)满足
,
其中
,
.
(1)当时,求
关于
的表达式,并求
的取值范围;
(2)设集合.若
,
,求证:
.
已知函数
(1)求函数的最小值和最小正周期;
(2)设的内角A、B、C的对边分别为a、b、c,且
,
,判断△ABC的形状,并求三角形ABC的面积.
(本小题满分14分)已知数列(
,
)满足
,
其中
,
.
(1)当时,求
关于
的表达式,并求
的取值范围;
(2)设集合.
①若,
,求证:
;
②是否存在实数,
,使
,
,
都属于
?若存在,请求出实数
,
;若不存在,请说明理由.
(本小题满分15分)如图,在平面直角坐标系中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
两点.若直线
斜率为
时,
.
(1)求椭圆的标准方程;
(2)试问以为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.