某居民小区内建有一块矩形草坪ABCD,AB=50米,BC=25米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE,EF和OF,考虑到小区整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且OE⊥OF,如图所示.(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域.(2)经核算,三条路每米铺设费用均为400元.试问如何设计才能使铺路的总费用最低?并求出最低总费用.
已知是函数的一个极值点,其中, (1)求与的关系式; (2)求的单调区间; (3)当时,函数的图象上任意一点的切线斜率恒大于,求的取值范围.
已知函数在处取得极值。 (1)讨论和是函数的极大值还是极小值. (2)求函数在处的切线方程. (3)求函数在区间上的最值.
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知,,,求
(1)求证:;(2)求证: 不可能成等差数列。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号