(本小题满分10分)已知全集,集合
,集合
.
求(1);
(2).
(本小题满分10分)选修4-1:几何证明选讲
如图,是的⊙
直径,
与⊙
相切于
,
为线段
上一点,连接
、
, 分别交⊙
于
、
两点,连接
交
于点
.
(Ⅰ)求证:、
、
、
四点共圆.
(Ⅱ)若为
的三等分点且靠近
,
,
,求线段
的长.
(本小题满分12分)已知函数(
为自然对数的底数).
(1)求函数的单调区间;
(2)设函数,存在
使得
成立,求实数
的取值范围.
(本小题满分12分)已知椭圆+
=1(
>
>
)的离心率为
,且过点(
,
).
(1)求椭圆方程;
(2)设不过原点的直线
:
,与该椭圆交于
、
两点,直线
、
的斜率依次为
、
,满足
,试问:当
变化时,
是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
(本小题满分12分)如图,三棱台中,
分别为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)若求证:平面
平面
.
(本小题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
![]() |
0.10 |
0.05 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
6.635 |
7.879 |
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:.其中
.)