(本小题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
![]() |
0.10 |
0.05 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
6.635 |
7.879 |
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:.其中
.)
选修4-4:坐标系与参数方程
在直角坐标系中,曲线
(
为参数,
),其中
,在以
为极点,
轴正半轴为极轴的极坐标系中,曲线
,曲线
.
(Ⅰ).求与
交点的直角坐标;
(Ⅱ).若与
相交于点
,
与
相交于点
,求
的最大值.
选修4-1:几何证明选讲
如图,P是O外一点,PA是切线,A为切点,割线PBC与
O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交
O于点E.
证明:(1)BE=EC;
(2)ADDE=2
.
已知函数=
.
(1)讨论的单调性;
(2)设,当
时,
,求
的最大值;
(3)已知,估计ln2的近似值(精确到0.001)
设,
分别是椭圆
的左右焦点,M是C上一点且
与x轴垂直,直线
与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且,求a,b.
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.