广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.
(1)样本中最喜欢B项目的人数百分比是________,其所在扇形图中的圆心角的度数是____;
(2)请把统计图补充完整;
(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?
正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连结DN.如果正方形的边长为2.
(1)求证:BE⊥AM;
(2)求DN的最小值.
【原创题】已知二次函数的图象与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3)
(1)求二次函数的解析式
(2)在抛物线的对称轴上确定一点P,使得△ACQ的周长最小,并求出点P的坐标和△ACQ的周长的最小值.
如图所示,A、B两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越保护区? 为什么?
如图,AB是⊙O的直径,点C在⊙O上,CE^AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9,CE=12,求BF的长.
如图,已知A(4,a)B(-2,-4)是一次函数y=kx+b的图像和反比例函数的图像的交点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象直接写出:当取何值时,反比例函数的值大于一次函数的值.
(3)求ΔAOB的面积.