(本小题共13分)已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)试用表示△的面积,并求面积的最大值.
已知函数的定义域为,且对任意,都有,且当时,恒成立, 证明:(1)函数是上的减函数; (2)函数是奇函数。
判断下列函数的奇偶性: (1)(2)
已知数列的前项和,求数列是等比数列的充要条件。
证明一次函数是奇函数的充要条件是。
已知是的充分条件,而是的必要条件,是的充分条件,是的必要条件。试判断:(1)是的什么条件?(2)是的什么条件?(3)其中有几对互为充要条件?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号