(本小题共14分) 已知点,
,动点P满足
,记动点P的轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)直线与曲线W交于不同的两点C,D,若存在点
,使得
成立,求实数m的取值范围.
若F、F
为双曲线
的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足;
.
(1)求该双曲线的离心率;
(2)若该双曲线过N(2,),求双曲线的方程;
(3)若过N(2,)的双曲线的虚轴端点分别为B
、B
(B
在y轴正半轴上),点A、B在双曲线上,且
时,直线AB的方程.
已知椭圆的一条准线方程是
其左、右顶点分别是A、B;双曲线
的一条渐近线方程为3x-5y=0.
(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;
(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若. 求证:
如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.
(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①②
③
求点G的横坐标的取值范围.
甲乙两公司生产同一种新产品,经测算,对于函数,
,及任意的
,当甲公司投入
万元作宣传时,乙公司投入的宣传费若小于
万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入
万元作宣传时,甲公司投入的宣传费若小于
万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x万元,乙公司投入宣传费y万元,建立如图直角坐标系,试回答以下问题:
(1)请解释;
(2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?
(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入万元,乙在上述策略下,投入最少费用
;而甲根据乙的情况,调整宣传费为
;同样,乙再根据甲的情况,调整宣传费为
如此得当甲调整宣传费为
时,乙调整宣传费为
;试问是否存在
,
的值,若存在写出此极限值(不必证明),若不存在,说明理由.
直线过曲线
上一点
,斜率为
,且
与x轴交于点
,其中
⑴试用表示
;
⑵证明:;
⑶若对
恒成立,求实数a的取值范围。