甲乙两公司生产同一种新产品,经测算,对于函数,
,及任意的
,当甲公司投入
万元作宣传时,乙公司投入的宣传费若小于
万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入
万元作宣传时,甲公司投入的宣传费若小于
万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x万元,乙公司投入宣传费y万元,建立如图直角坐标系,试回答以下问题:
(1)请解释;
(2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?
(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入万元,乙在上述策略下,投入最少费用
;而甲根据乙的情况,调整宣传费为
;同样,乙再根据甲的情况,调整宣传费为
如此得当甲调整宣传费为
时,乙调整宣传费为
;试问是否存在
,
的值,若存在写出此极限值(不必证明),若不存在,说明理由.
(本小题满分12分)已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
甲 |
乙 |
丙 |
|
维生素A(单位/千克) |
600 |
700 |
400 |
维生素B(单位/千克) |
800 |
400 |
500 |
成本(元/千克) |
11 |
9 |
4 |
(Ⅰ)用x,y表示混合食物成本c元;
(Ⅱ)确定x,y,z的值,使成本最低.
(本小题满分12分)已知各项均为正数的数列中,
是数列
的前
项和,对任意
,有
.函数
,数列
的首项
.
(Ⅰ)求数列的通项公式;
(Ⅱ)令求证:
是等比数列并求
通项公式;
(Ⅲ)令,
,求数列
的前n项和
.
( (本小题满分12分)已知某种稀有矿石的价值(单位:元)与其重量
(单位:克)的平方成正比,且
克该种矿石的价值为
元。
⑴写出(单位:元)关于
(单位:克)的函数关系式;
⑵若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率;
⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)
((本小题满分12分)如图,在矩形中,
,又
⊥平面
,
.
(Ⅰ)若在边上存在一点
,使
,
求的取值范围;
(Ⅱ)当边上存在唯一点
,使
时,
求二面角的余弦值.
(本小题满分12分)已知向量。
(1)若f(x)=1,求cos(+x)的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,
求函数f(A)的取值范围。