游客
题文

如图,在△ABC中,∠B=60°,∠C=20°,AD为△ABC的高,AE为角平分线.求∠EAD的度数.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.

(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;

(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.

已知一次函数 y = kx + b k 0 的图象与反比例函数 y = 4 x 的图象相交于点 A 1 , m B n , 2

(1)求一次函数的表达式,并在图中画出这个一次函数的图象;

(2)根据函数图象,直接写出不等式 kx + b 4 x 的解集;

(3)若点C是点B关于y轴的对称点,连接ACBC,求△ABC的面积.

公司生产AB两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的AB型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用 x 表示,共分为三个等级:合格 80 x 85 ,良好 85 x 95 ,优秀 x 95 ),下面给出了部分信息:

10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.

10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94

抽取的AB型扫地机器人除尘量统计表

型号

平均数

中位数

众数

方差

“优秀”等级所占百分比

A

90

89

a

26.6

40%

B

90

b

90

30

30%

根据以上信息,解答下列问题:

(1)填空:a   b   m   

(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;

(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).

在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,EAD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点EBC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:

证明:用直尺和圆规,过点EBC的垂线EF,垂足为F(只保留作图痕迹).

在△BAE和△EFB中,

EFBC

∴∠EFB=90°.

又∠A=90°,

   

ADBC

   

   

∴△BAE≌△EFBAAS).

同理可得    

S BCE = S EFB + S EFC = 1 2 S 矩形 ABFE + 1 2 S 矩形 EFCD = 1 2 S 矩形 ABCD

在平面直角坐标系中,抛物线 y x 2 2 x 3 x 轴相交于点 A B (点 A 在点 B 的左侧),与 y 轴相交于点 C ,连接 A C

(1)求点 B ,点 C 的坐标;

2)如图1,点 E m 0 在线段 O B 上(点 E 不与点 B 重合),点 F y 轴负半轴上, O E O F ,连接 A F B F E F ,设 A C F 的面积为 S 1 B E F 的面积为 S 2 S S 1 + S 2 ,当 S 取最大值时,求 m 的值;

(3)如图2,抛物线的顶点为 D ,连接 C D B C ,点 P 在第一象限的抛物线上, P D B C 相交于点 Q ,是否存在点 P ,使 P Q C A C D ,若存在,请求出点P的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号