公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用 表示,共分为三个等级:合格 ,良好 ,优秀 ),下面给出了部分信息:
10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.
10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94
抽取的A、B型扫地机器人除尘量统计表
型号 |
平均数 |
中位数 |
众数 |
方差 |
“优秀”等级所占百分比 |
A |
90 |
89 |
a |
26.6 |
40% |
B |
90 |
b |
90 |
30 |
30% |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,m= ;
(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;
(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).
已知关于x的一元二次方程x2+2x+k-2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)当k为正整数,且该方程的根都是整数时,求k的值.
已知x2-2x-7=0,求(x-2)2+(x-3)(x+3) 的值.
解不等式组
如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
在平面直角坐标系xOy中,对于点和点
,给出如下定义:若
,则称点
为点
的限变点.例如:点
的限变点的坐标是
,点
的限变点的坐标是
.
(1)①点的限变点的坐标是___________;
②在点,
中有一个点是函数
图象上某一个点的限变点,这个点是_______________;
(2)若点在函数
的图象上,其限变点
的纵坐标
的取值范围是
,求
的取值范围;
(3)若点在关于
的二次函数
的图象上,其限变点
的纵坐标
的取值范围是
或
,其中
.令
,求
关于
的函数解析式及
的取值范围.