公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用 表示,共分为三个等级:合格 ,良好 ,优秀 ),下面给出了部分信息:
10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.
10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94
抽取的A、B型扫地机器人除尘量统计表
型号 |
平均数 |
中位数 |
众数 |
方差 |
“优秀”等级所占百分比 |
A |
90 |
89 |
a |
26.6 |
40% |
B |
90 |
b |
90 |
30 |
30% |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,m= ;
(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;
(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).
教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边、
与斜边
满足关系式
,称为勾股定理.
(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.
(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当=3,
=4时梯形ABCD的周长.
(3) 如下图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.
观察下列式子:;
;
;…….
(1)请你以上规律写出第4个等式: ;
(2)根据你发现的规律,请写出第n个等式 ;
(3)你认为(2)中所写的等式一定成立吗?并说明理由.
如图,已知DE、BF分别为∠ADC、∠ABC的平分线,∠1=∠2,∠ADC=∠ABC,则AB与CD平行吗?为什么?
在正方形网格中,△ABC三个顶点的位置都在格点上如图所示,现将△ABC平移,使点A移动到点A′,点B′, 点C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′;
(2)若连接AA′、CC′,则这两条线段之间的关系是________________________________.
先化简,再求值:,其中