如图所示,公园内有一块边长为的等边
形状的三角地,现修成草坪,图中
把草坪分成面积相等的两部分,
在
上,
在
上.
(Ⅰ)设,试用
表示
的函数关系式;
(Ⅱ)如果是灌溉水管,为节约成本希望它最短,
的位置应该在哪里?如果
是参观线路,则希望它最长,
的位置又在哪里?请给予证明.
已数列满足条件:
(
*)
(Ⅰ)令,求证:数列
是等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)令,求数列
的前n项和
。
某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为3200元,面粉的保管等其它费用为平均每吨每天3元,购买面粉每次需要支付运费900元。
(Ⅰ)求该厂每隔多少天购买一次面粉,才能使平均每天支付的总费用最少?最少费用为多少?
(Ⅱ)某提供面粉的公司规定:当一次购买面粉不少于120吨时,价格可享受9.5折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
制定投资计划时,不仅要考虑可能获得的赢利,而且要考虑可能出现的亏损。某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大赢利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的赢利最大?
已知中,
为边
上的一点,
,
,
,求
.
已知数列为等差数列,其中
,
恰为
和
的等比中项。
(Ⅰ)求数列的通项公式
;
(Ⅱ)若,求数列
的前n项和
。