已数列满足条件:(*)(Ⅰ)令,求证:数列是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)令,求数列的前n项和。
数列中,,点在直线上. (Ⅰ)求证数列是等差数列,并求出数列的通项公式; (Ⅱ)若,求数列的前项和.
在中,内角对边的边长分别是,已知,. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
已知是一个等差数列,且,.(Ⅰ)求的通项; (Ⅱ)求前项和的最大值.
设的内角的对边分别为.已知,求: (Ⅰ)的大小; (Ⅱ)的值.
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,(I)求椭圆E的方程; (II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号