游客
题文

(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图(如图),

(Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).

科目 数学   题型 解答题   难度 较易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

选修4-1:几何证明选讲

如图, A B O 的直径, A C O 的切线, B C O E .

image.png

(Ⅰ)若 D A C 的中点,证明: D E O 的切线;

(Ⅱ)若 O A = 3 C E ,求 A C B 的大小.

已知函数 f x = x 3 + a x + 1 4 , g x = - ln x .
(Ⅰ)当 a 为何值时, x 轴为曲线 y = f x 的切线;
(Ⅱ)用 m i n m , n 表示 m , n 中的最小值,设函数 h x = m i n f x , g x x > 0 ,讨论 h x )零点的个数.

在直角坐标系 x O y 中,曲线 C y = x 2 4 与直线 y = k x + a ( a > 0 ) 交与 M , N 两点,
(Ⅰ)当 k = 0 时,分别求 C 在点 M N 处的切线方程;
(Ⅱ) y 轴上是否存在点 P ,使得当 k 变动时,总有 O P M = O P N ?说明理由.

某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 y (单位: t )和年利润 z (单位:千元)的影响,对近8年的年宣传费 x i 和年销售量 y i i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
image.png








46.6
56.3
6.8
289.8
1.6
1469
108.8


表中image005.png=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

如图,四边形 A B C D 为菱形, A B C =120°, E , F 是平面 A B C D 同一侧的两点, B E ⊥平面 A B C D D E ⊥平面 A B C D B E = 2 D E A E E C .
image.png

(Ⅰ)证明:平面 A E C ⊥平面 A F C
(Ⅱ)求直线 A E 与直线 C F 所成角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号