(本小题满分12分)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且.
(1)求角C;
(2)若c=,且△ABC的面积为
,求a+b的值.
(本小题满分14分)
已知汕头市某学校高中部某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查。
(Ⅰ)若要从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;
(Ⅱ)若男学生考前心理状态好的概率为0.6,女学生考前心理状态好的概率为0.5,表示抽取的5名学生中考前心理状态好的人数,求P(
=1)及E
.
(本小题满分14分)如图,为圆柱
的母线,
是底面圆
的直径,
分别是
的中点,DE⊥面CBB1.
(Ⅰ)证明:DE //面ABC;
(Ⅱ)求四棱锥与圆柱
的体积比;
(Ⅲ)若,求
与面
所成角的正弦值.
(本小题满分12分)已知函数f(x)=;
(Ⅰ)证明:函数f(x)在上为减函数;
(Ⅱ)是否存在负数,使得
成立,若存在求出
;若不存在,请说明理由。
(本小题满分12分)已知函数.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)已知内角
的对边分别为
,且
,若向量
与
共线,求
的值.
(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过 椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.