设A、B是两个非空集合,定义A与B的差集.
(1)试举出两个数集,使它们的差集为单元素集合;
(2)差集与
是否一定相等?请说明理由;
(3)已知,
,求
及
,由此你可以得到什么更一般的结论?(不必证明)
如图,在四棱锥P-ABCD中,PA底面ABCD,
DAB为直角,AB‖CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:CD平面BEF;
(Ⅱ)设PA=k·AB,且二面角E-BD-C的平面角大于,求k的取值范围.
等差数列的首项为
,公差
,前
项和为
,其中
.
(Ⅰ)若存在,使
成立,求
的值;
(Ⅱ)是否存在,使
对任意大于1的正整数
均成立?若存在,求出
的值;否则,说明理由.
已知向量.
(Ⅰ)若求
;
(Ⅱ)设的三边
满足
,且边
所对应的角为
,若关于
的方程
有且仅有一个实数根,求
的值.
(本小题满分14分)
已知函数。
(Ⅰ)求函数的单调区间。
(Ⅱ)若上恒成立,求实数
的取值范围
(Ⅲ)在(Ⅱ)的条件下,对任意的,求证:
。
(本小题满分12分)
已知椭圆C:的短轴长为
,且斜率为
的直线
过椭圆C的焦点及点
。
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线过椭圆C的左焦点
,交椭圆于点P、Q,
(ⅰ)若满足(
为坐标原点),求
的面积;
(ⅱ)若直线与两坐标轴都不垂直,点M在
轴上,且使
为
的一条角平分线,则称点M为椭圆C的“左特征点”,求椭圆C的左特征点。