在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连接BD,F为BD中点.
(1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k= ;
(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF;
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
先化简,再求值: ,其中 .
解不等式组: .
计算: .
已知四边形 是边长为1的正方形,点 是射线 上的动点,以 为直角边在直线 的上方作等腰直角三角形 , ,设 .
(1)如图,若点 在线段 上运动, 交 于点 , 交 于点 ,连结 ,
①当 时,求线段 的长;
②在 中,设边 上的高为 ,请用含 的代数式表示 ,并求 的最大值;
(2)设过 的中点且垂直于 的直线被等腰直角三角形 截得的线段长为 ,请直接写出 与 的关系式.
在平面直角坐标系中, 为坐标原点,直线 与 轴交于点 ,与 轴交于点 ,二次函数 的图象过 、 两点,且与 轴交于另一点 ,点 为线段 上的一个动点,过点 作直线 平行于 轴交 于点 ,交二次函数 的图象于点 .
(1)求二次函数的表达式;
(2)当以 、 、 为顶点的三角形与 相似时,求线段 的长度;
(3)已知点 是 轴上的点,若点 、 关于直线 对称,求点 的坐标.