如图1,已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,经过B,C两点的直线是y=
x-2,连结AC.
(1)求出抛物线的函数关系式;
(2)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
(3)点P(t,0)是x轴上一动点,P、Q两点关于直线BC成轴对称,PQ交BC于点M,作QH⊥x轴于点H.连结OQ,是否存在t的值,使△OQH与△APM相似?若存在,求出t的值;若不存在,说明理由.
正方形边长为4,
、
分别是
、
上的两个动点,当
点在
上运动时,保持
和
垂直,设MB=x
(1)证明:;
(2)当点运动到什么位置时
,
求此时的值.
烟花广告公司将一块广告牌任务交给师徒两人,已知师傅单独完成时间是徒弟单独完成时间的,现由徒弟先做1天,师徒再合作2天完成。
⑴师徒两人单独完成任务各需要几天?
⑵若完成后得到报酬720元,你若是部门经理,按各人完成的工作量计算报酬,该如何分配?
如图,在方格纸中
(1)请在方格纸上建立平面直角坐标系,使,并求出
点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将
放大,画出放大后的图形
;
(3)计算的面积
.
若关于x的分式方程-
=1无解,求m的值。
先化简,再从-2 , 2,
中选择一个合适的数代入求值.