游客
题文

如图1,直线y=﹣x+2分别与x轴、y轴交于点M,N.Rt△ABC的顶点B与原点O重合,BC在x轴正半轴上,BC=1,∠ABC=60°.将△ABC沿x轴正方向以每秒1个单位长度的速度平移,当点B与点M重合时,△ABC停止运动,设运动时间为t秒.

(1)当点A落在直线MN上时,求t的值;
(2)在(1)基础上,△ABC继续平移,AB,AC分别交线段MN于点E,F(如图2).
①t为何值时,SAEF=SABC
②若当点A刚好落在直线MN上时,动点P同时从顶点B出发,以每秒个单位长度的速度沿B→A运动,△ABC停止平移时,点P随之停止.则在点P运动的过程中,是否存在某一时刻,△PEF与△MON相似?若存在,求出此时t的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表或树形图法求两次都摸到红球的概率.

为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:

(1)此次共调查了多少名同学?
(2)将条形统计图补充完整,并计算扇形统计图中书法部分的圆心角的度数;
(3)如果该校共有名学生参加这个课外兴趣小组,而每位教师最多只能辅导本组的名学生,估计每个兴趣小组至少需要准备多少名教师.

(1)计算.(2)解不等式组:

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数的图象和性质.
①填写下表,画出函数的图象;

x




1
2
3
4

y










②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数的最小值.
【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.

已知均为锐角,且。求的度数。
小聪、小明、小慧三位同学都通过构造一个几何图形,使这个代数计算问题快速、简捷地得到了解决,请你思考他们的方法,选择其中一个图形,解答上述问题。(也可以自己构造一个不同的图形,并完成解答)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号