如图,四边形 是平行四边形, 且分别交对角线 于点 , .
(1)求证: ;
(2)当四边形 分别是矩形和菱形时,请分别说出四边形 的形状.(无需说明理由)
计算求解:
(1)计算 ;
(2)解方程组 .
数学课上,有这样一道探究题.
如图,已知 中, , , ,点 为平面内不与点 、 重合的任意一点,连接 ,将线段 绕点 顺时针旋转 ,得线段 ,连接 、 点 、 分别为 、 的中点,设直线 与直线 相交所成的较小角为 ,探究 的值和 的度数与 、 、 的关系.
请你参与学习小组的探究过程,并完成以下任务:
(1)填空:
【问题发现】
小明研究了 时,如图1,求出了 的值和 的度数分别为 , ;
小红研究了 时,如图2,求出了 的值和 的度数分别为 , ;
【类比探究】
他们又共同研究了 时,如图3,也求出了 的值和 的度数;
【归纳总结】
最后他们终于共同探究得出规律: (用含 、 的式子表示); (用含 的式子表示).
(2)求出 时 的值和 的度数.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,对称轴 与 轴交于点 ,直线 ,点 是直线 上方抛物线上一动点,过点 作 ,垂足为 ,交 于点 ,连接 、 、 、 .
(1)抛物线的解析式为 ;
(2)当四边形 面积最大时,求点 的坐标;
(3)在(2)的条件下,连接 ,点 是 轴上一动点,在抛物线上是否存在点 ,使得以 、 、 、 为顶点,以 为一边的四边形是平行四边形.若存在,请直接写出点 的坐标;若不存在,说明理由.
如图,在菱形 中,对角线 、 相交于点 , 经过点 , ,交对角线 于点 ,且 ,连接 交 于点 .
(1)试判断 与 的位置关系,并说明理由;
(2)若 , ,求 的半径.