如图,在凸四边形中,
为定点,
,
为动点,满足
.
(1)写出与
的关系式;
(2)设△BCD和△ABD的面积分别为和
,求
的最大值.
甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为,被甲或乙解出的概率为
,(1)求该题被乙独立解出的概率;(2)求解出该题的人数
的数学期望和方差
要制造一种机器零件,甲机床废品率为,而乙机床废品率为
,而它们
的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:
(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.
三个元件正常工作的概率分别为
将它们中某两个元件并联后再和第三元件串联接入电路.
(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?
|
(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.
某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,
数学为,英语为
,问一次考试中
(Ⅰ)三科成绩均未获得第一名的概率是多少?
(Ⅱ)恰有一科成绩未获得第一名的概率是多少
奖器有个小球,其中
个小球上标有数字
,
个小球上标有数字
,现摇出
个小球,规定所得奖金(元)为这
个小球上记号之和,求此次摇奖获得奖金数额的数学期望