已知关于x,y的方程C:
(1)若方程C表示圆,求的取值范围;
(2)若圆C与圆外切,求
的值.
已知函数.
(Ⅰ)记,求
的极小值;
(Ⅱ)若函数的图象上存在互相垂直的两条切线,求实数
的值及相应的切点坐标.
已知等差数列(
N+)中,
,
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若将数列的项重新组合,得到新数列
,具体方法如下:
,
,
,
,…,依此类推,
第项
由相应的
中
项的和组成,求数列
的前
项和
一个盒子装有六张卡片,上面分别写着如下六个函数:,
,
,
,
,
.
(Ⅰ)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数。在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
如图,在直四棱柱中,底面
为平行四边形,且
,
,
,
为
的中点.
(Ⅰ) 证明:∥平面
;
(Ⅱ)求直线与平面
所成角的正弦值.
已知锐角中内角
、
、
的对边分别为
、
、
,
,且
.
(Ⅰ)求角的值;
(Ⅱ)设函数,
图象上相邻两最高点间的距离为
,求
的取值范围