(本小题满分12分)某工厂生产某种产品,每日的成本
(单位:万元)与日产量(单位:吨)满足函数关系式
,每日的销售
(单位:万元)与日产量的函数关系式为
,已知每日的利润
,且当
时,
.
(1)求
的值;
(2)当日产量为多少吨时,每日的利润可以达到最大,并求此最大值.
(本小题14分)已知点
,
的坐标分别为
,
.直线
,
相交于点
,且它们的斜率之积是
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设
是曲线
上的动点,直线
,
分别交直线
于点
,线段
的中点为
,求直线
与直线
的斜率之积的取值范围;
(3)在(2)的条件下,记直线
与
的交点为
,试探究点
与曲线
的位置关系,并说明理由.
(本小题13分)已知抛物线的顶点在坐标原点
,焦点
在
轴上,抛物线上的点
到
的距离为2,且
的横坐标为1.直线
与抛物线交于
,
两点.
(1)求抛物线的方程;
(2)当直线
,
的倾斜角之和为
时,证明直线
过定点.
如图,在直三棱柱
(侧棱和底面垂直的棱柱)中,平面
侧面
,
,
,且满足
.
(1)求证:
;
(2)求点
的距离;
(3)求二面角
的平面角的余弦值.
(本小题12分)已知命题
“存在
”,命题
:“曲线
表示焦点在
轴上的椭圆”,命题
“曲线
表示双曲线”
(1)若“
且
”是真命题,求
的取值范围;
(2)若
是
的必要不充分条件,求
的取值范围。
(本小题7分)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;