设函数.
(1)求的单调区间和极值;
(2)若关于的方程
有3个不同实根,求实数a的取值范围.
如图,正方形所在的平面与平面
垂直,
是
和
的交点,
,且
.
(1)求证:平面
;
(2)求二面角的大小.
已知数列满足
(1)分别求的值。
(2)猜想的通项公式
,并用数学归纳法证明。
已知动圆与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
两个不同的点.
(1)求曲线的方程;
(2)试探究和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为
,求
的最大值.
已知函数,
,其中
,
为自然对数的底数.
(1)若在
处的切线
与直线
垂直,求
的值;
(2)求在
上的最小值;
(3)试探究能否存在区间,使得
和
在区间
上具有相同的单调性?若能存在,说明区间
的特点,并指出
和
在区间
上的单调性;若不能存在,请说明理由.