下面是解分式方程的过程,阅读完后请填空.
解方程:.
解:方程两边都乘以,得
960 - 600=90,
解这个方程,得.
经检验,是原方程的根.
第一步计算中的是: ;这个步骤用到的依据是 ;
解方式方程与解一元一次方程之间的联系是: .
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:
A型利润 |
B型利润 |
|
甲店 |
200 |
170 |
乙店 |
160 |
150 |
(1)设分配给甲店A型产品x件,这件公司卖出这100件产品的总利润W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若要求总利润不低于17560元,有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A、B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大.
如图,已知△ABC的三个顶点在格点上.
(1)作出△ABC关于x轴对称的图形△
(2)求出△的面积.
已知2x-y的平方根为±4,-2是y的立方根,求-2xy的平方根.
(1)计算:
(2)解方程:
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为米,
(1)当x为何值时,围成的养鸡场面积是60平方米?
(2)能否围成面积为70平方米的养鸡场?如果能,求出其边长,如果不能,请说明理由.